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Abstract. In iMy,  the canonical form H ( J )  of the Hamiltonian X ( q ,  p )  = fp2+fa$q2+Aqu 
(w, i E R and U > 2). which represents a large class of anharmonic oscillators, is expressed 
in a closed form This is a new result, as is the subsequent closed form of the pulsation o ( J ) .  
The connection between series reversion and inversion, as applied to genedized hypergeotnekic 
functions. is also considered and extended to apply to arbitrary series. 

1. Introduction 

The technique of series reversion has been used to obtain the canonical form H ( J )  of the 
Hamiltonian H ( 4 ,  p )  = i p 2  + $uiqz + hq' (00. A E R and (Y z 2) for many years. It 
has not previously been possible, however, to obtain a closed expression for this due to 
the complexity of generalized hypergeometric functions. This problem has been addressed 
before (Cadaccioni and Caboz 1984) but without success. In this paper, we use the Lagrange 
expansion (Abramowitz and Stegun 1965, equation (3.6.6)) and combinatorial analysis in 
an original manner to obtain the elusive closed form of H ( J )  and also the pulsation o ( J ) .  

The connection between series reversion and inversion, also noted by Cadaccioni and 
Caboz (1984), is considered by viewing the Lagrange expansion in a slightly different way. 
In the concluding section, this connection is considered for a general function y(x) and the 
convergence properties of H ( J )  and o ( J )  are also investigated. 

2. The c a n o n i d  form of the Hamiltonian 

It is known that the period and the action variable can be expressed in the following way 
Codaccioni and Caboz 1984, 1985): 

f f - 1 .  4 6 f f - 2  ff 
,..., (2.2) __- -  
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for or odd where 
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-~h(U-2)12aUlL/2 
{(a - 2)/2]'=-2'/200"' z =  (2.5) 

These expressions were initially determined heuristically (Caboz and Poletti 1983, Caboz 
and Loiseau 1983, Caboz 1983). Since then, they have been mathematically proven (Loiseau 
et a1 1988, 1989) using results obtained by Caboz er al (1985). Note that they are only 
convergent for Iz[ c 1 but may be analytically continued for IzI > 1 for an infinite potential 
well (A z 0, or even). 

Therefore, in general, 

where h is the energy. Using the Lagrange expansion, and remembering that H ( q ,  p )  = h ,  
we obtain the expression 

It should be explained that this expression is only valid when 

but it is clear from equation (2.6) that 

Now note that 

(2.10) 

(2.1 1) 

where U, is the coefficient of (h')y in (F(h')}-(K+l). By considering F = F(h'), we can 

(2.12) 

(2.13) 

(2.14) 
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Now F-"+') may be written in the form 

(2.15) 

To obtain this latter expression we note that (CE, (xk /k! )y ' )  is a generating function for a 
multinomial expansion of the form given above (see Abramowitz and Stegun 1965, section 
24.1.2) where 

(r;a1,az ,  ..., a,)'= r!/(1!)u'al!(2!)uZaz! ... (r!)",a,! (2.17) 

and is summed over 

a1 + 2 a z f . .  . + ra, = r (2.18) 

and 

a, + a2 +. .. +a, = m. (2.19) 

The other terms in equations (2.16) and (2.17) are defined to be 

Z or even 
'= { zz or odd 

... (e) a-2  (L),] or -2  

[ ( k)j ( $)j ' ' ' (Y)] / [ 
xj= 

( . . . 

I ...(e) a - 2  (91 2 

It can be seen that equation (2.1 1) holds for 

K = (  7 ( . - a 1  a even 

(or - 2)l a odd 

where 1 = 0, 1 ,2,  . . . and hence 

(2.20) 

or even 

(2.21) 

a odd. 

(2.22) 
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with 

r l =  (2.24) 

Similarly, the pulsation may be written in the following closed form: 

The first eleven non-zero coefficients of J n  in either expression can be obtained by 
using Abramowitz and Stegun (1965, table 24.2). Shown below (in table 1) are the first 
eleven terms of 0100 for the Duffing oscillator (a = 4,  A 0). 

Table 1. Coefficients of ( h J / ( ~ i ) ) "  in o/q, for the Duffing oscillator expressed in terms of a 
rational number of the form p/29. 

n p  4 
0 1  0 
1 3  0 
2 -51 2 
3 375 2 
4 -53445 6 
5 262647 5 
6 -21926793 8 
7 238225977 8 
8 -170513657325 14 
9 974520584235 13 
IO -90642576672219 16 

3. The connection between series reversion and inversion 

By retaining the first few terms of the above series, it is possible to show that 2 a / o ( h )  
does, in fact, yield the first few terms of the period T(h).  In this section, however, we 
show explicitly that they are entirely equivalent. If we define, for simplicity, 

so that 

G(h') dh' = hF(h) 
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where T(h)  is given by equations (2.1), (2.3), and F(h)  by equation (2.6), then it is possible 
to write 

The last step is reliant on the inequality Ih'F(h')l > IhF(h)l being satisfied. This can 
be achieved by choosing lh'l sufficiently large which then involves analytic continuation 
of F(h').  hence it is necessary to generalize the Abramowitz and Stegun (1965) 
equation (15.3.7) for a general pFq where p = q + 1. This is given by 

where c, and d, are defined to be 
cy = 1 +a,, - b, 

d, = 1 +a; -a, 

(3.9) 

(3.10) 

and was arrived at by following Copson's (1935) derivation of the analytic continuation for 
the Gauss hypergeometric function. 

If we consider the first term in the summation for the specific Fq in question, then we 
find that 

(&a' (h')-"-z"(k, va (3.11) 
and therefore the first term of h'F(h') is proportional to (h')cL+2/*) for large h'. Thus, it is 
apparent that the contour of integration can always be chosen so that the inequality holds. 

Taking the differentiation through the integral we obtain 

Thus we have no singularity at h' = 0 and a simple pole at h' = h, therefore 

h'F(h') h ' - h  - hF(h) 1 h,d 
-=  @T G(h)( 
237 

and by taking the limit as h' -+ h it is a simple task to show that 

(3.12) 

(3.13) 

OT 
2n 

G(h)[G(h)]-' = 1. (3.14) -=  
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4. Generalizations and conclusions 

The ideas of section 3 can be extended to the general case where we are able to show that 
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for any monotonically increasing function y(x). By starting with the more general form of 
the Lagrange expansion, 

where y = f ( x ) ,  yo = f ( x 0 )  and f ' (x0)  # 0. It is a simple matter of following the method 
in the previous section to show 

where F ( x )  = f ( x )  - yo. It also follows that 

(4.3) 

(4.4) 

This is where the restriction of the monotonicity of F ( x ) ,  and hence y(x), arises and cannot 
be relaxed as in the previous case. Thus, 

-I dr' dy (4 
dy 2ni [F(x')  - F ( x ) ]  = [T] (4.5) 

In order to consider the convergence properties and analyticity domain of (2.23) and 
( 2 2 9 ,  it is neckary to use d'Alembert's ratio test and, hence, we have to be able to 
evaluate the nth term as n + CO. Due to the combinatorial nature of the expressions 
(Comtet 1974, Riordan 19.581, an asymptotic form is far from evident and hence we could 
only check the ratio of successive terms for a range of values of a! for limited values of n. By 
using published algorithms (Nijenhuis and Wilf I975), we were able to generate the required 
partitions and calculate the ratios out as far as n = 80. Although clearly unacceptable as 
proof of convergence, the results were suggestive of a radius of convergence and hence 
a definite analyticily domain for each case. However, the question of convergence must 
remain an open question. 
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